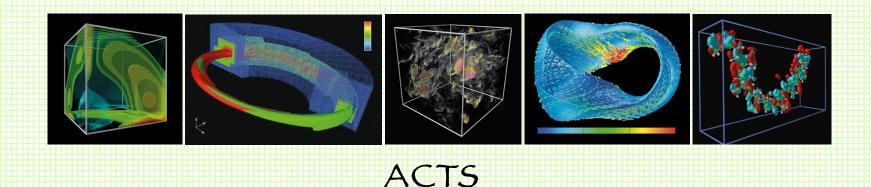
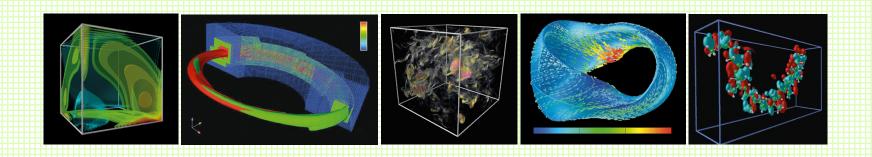
The DOE ACTS Collection Fast and Robust Libraries for High Performance Computing


Tony Drummond Lawrence Berkeley National Laboratory LADrummond@lbl.gov

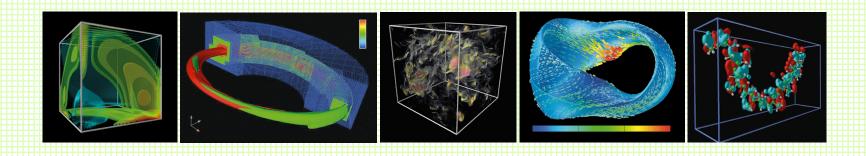
The Advanced CompuTational Software Collection Project


Goal: The Advanced CompuTational Software Collection (ACTS) project makes reliable and efficient software tools more widely used, and more effective in solving the nation's engineering and scientific problems.

References:

- L.A. Drummond, O. Marques: An Overview of the Advanced CompuTational Software (ACTS) Collection. ACM Transactions on Mathematical Software Vol. 31 pp. 282-301, 2005
- http://acts.nersc.gov

The Advanced CompuTational Software Collection Project


Principal Investigators: L. A. Drummond and O. A. Marques Lawrence Berkeley National Laboratory

References:

- L.A. Drummond, O. Marques: An Overview of the Advanced CompuTational Software (ACTS) Collection. ACM Transactions on Mathematical Software Vol. 31 pp. 282-301, 2005
- http://acts.nersc.gov

The Advanced CompuTational Software Collection Project

acts-support@nersc.gov

References:

- L.A. Drummond, O. Marques: An Overview of the Advanced CompuTational Software (ACTS) Collection. ACM Transactions on Mathematical Software Vol. 31 pp. 282-301, 2005
- http://acts.nersc.gov

The Core Activity Areas of the ACTS Collection Project

Long-Term Maintenance

Tools for Run-time Support:

Scalable Debugging Tools **Performance Monitoring Tools**

Software Development Tools

Numerical Software

Numerical Software
Library Optimization
Software Distribution
Software Dependency Graph:
Platform, Basic and
Interoperability

Outreach and

Enabling

Dissemination

ACTS Information Center:

Guide to Available Services

Technical Reports

Newsgroups

On-line Tutorials

Uniform Tool Documentation

Well Documented Examples for All Tools

Workshops

Short Courses and Coding Camps

Independent Testing and Evaluation

Testing Platforms

Verification Engines

Computer Vendor Collaborations

Computational Sciences and

Engineering Networking:

Developers Exchange

User Feedback

Problem/Bug Tracking

International Collaborations

High-Level **User Support**

High-Level User Interfaces

To Tool Users:

Petascale

Help with Tool Selection

Help with Tool Utilization

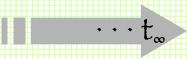
Help with Tool Installation

Develop High-Level User Interfaces

To Tool Developers:

Tool Long-term Maintenance Practices

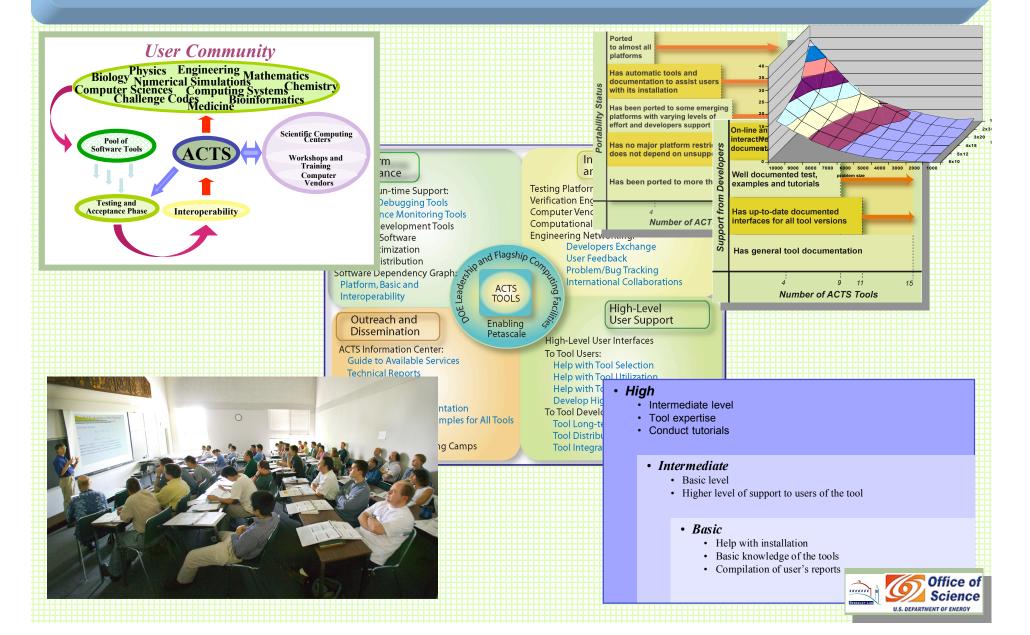
Tool Distribution Utilities, Licensing


Tool Integration Mechanisms

Sustainable

Software

Support



The U.S. DOE ACTS Collection Project

Execution time of PDPOSV for various grid shapes

Tools In The ACTS Collection

Advanced CompuTational Software Collection (ACTS)

Funded by DOE/ASCR

LIBRARY DEVELOPMENT

NUMERICAL TOOLS

CODE DEVELOPMENT

RUN TIME SUPPORT

http://acts.nersc.gov

Category	Tool	Functionalities
	Trilinos	Algorithms for the iterative solution of large sparse linear systems.
Numerical	Hypre	Algorithms for the iterative solution of large sparse linear systems, intuitive grid-centric interfaces, and dynamic configuration of parameters.
	PETSc	Tools for the solution of PDEs that require solving large-scale, sparse linear and nonlinear systems of equations.
Ax = b	OPT++	Object-oriented nonlinear optimization package.
$Az = \lambda z$ $A = U\Sigma V^{T}$	SUNDIALS	Solvers for the solution of systems of ordinary differential equations, nonlinear algebraic equations, and differential-algebraic equations.
PDEs ODEs	ScaLAPACK	Library of high performance dense linear algebra routines for distributed-memory message-passing.
M	SLEPc	Software library for the solution of large sparse eigenproblems on parallel computers.
	SuperLU	General-purpose library for the direct solution of large, sparse, nonsymmetric systems of linear equations.
	TAO	Large-scale optimization software, including nonlinear least squares, unconstrained minimization, bound constrained optimization, and general nonlinear optimization.
Code Development	Global Arrays	Library for writing parallel programs that use large arrays distributed across processing nodes and that offers a shared-memory view of distributed arrays.
Development	Overture	Object-Oriented tools for solving computational fluid dynamics and combustion problems in complex geometries.
Run Time Support	TAU	Set of tools for analyzing the performance of C, C++, Fortran and Java programs.
Library Development	ATLAS	Tools for the automatic generation of optimized numerical software for modern computer architectures and compilers.

U.S. DEPARTMENT OF ENERGY

Computational Problem	Methodology	Algorithms	Library
Systems of Linear Equations		LU Factorization	ScaLAPACK (dense) SuperLU (sparse)
	Dírect Methods	Cholesky Factorization	ScaLAPACK
		LDL ^T (Tridiagonal matrices)	ScaLAPACK
		QR Factorization	ScaLAPACK
		QR with column pivoting	ScaLAPACK
		LQ factorization	ScaLAPACK Office of Science of S

Computational Problem	Methodology	Algorithms	Library
Systems of Linear		Conjugate Gradient	AztecOO (Trílínos)
Equations			PETSc
(cont)		GMRES	AztecOO
			PETSc
			Нурге
		CG Squared	AztecOO
	Iterative Methods		PETSc
		Bí-CG Stab	AztecOO
			PETSc
		Quasi-Minimal Residual (QMR)	AztecOO
		Transpose Free	AztecOO
		QMR	PETSC Office of Science

U.S. DEPARTMENT OF ENERGY

Computational Problem	Methodology	Algorithms	Library
Systems of Linear Equations		SYMMLQ	PETSc
(cont)	Iterative Methods (cont)	Precondition CG	AztecOO PETSc Hypre
		Ríchardson	PETSc
		Block Jacobí Preconditioner	AztecOO PETSc Hypre
		Point Jocobi Preconditioner	AztecOO
		Least Squares Polynomíals	PETSc Office of Science

U.S. DEPARTMENT OF ENERGY

Computational Problem	Methodology	Algorithms	Library
Systems of Linear		SOR Preconditioning	PETSc
Equations		Overlapping Additive	PETSc
(cont)		Schwartz	
		Approximate Inverse	Нурге
	Iterative Methods	Sparse LU	AztecOO PETSc
	(cont)	preconditioner	Hypre
		Incomplete LU (ILU)	AztecOO
	MultíGríd (MG) Methods	preconditioner	
		Least Squares	PETSc
		Polynomials	
		MG Preconditioner	PETSc
		, view in a second second	Hypre
		Algebraic MG	Нурге
		Semi-coarsening	Hypre Office of Science

Computational Problem	Methodology	Algorithm	Library
Línear Least Squares Problems	Least Squares	mín _x b - Ax ₂	ScaLAPACK
	Mínímum Norm Solution	mín _x x ₂	ScaLAPACK
	Mínímum Norm Least Squares	$min_x \mid \mid b - Ax \mid \mid_2$ $min_x \mid \mid x \mid \mid_2$	ScaLAPACK
Standard Eigenvalue	Symmetric Eigenvalue	$Az = \lambda z$	ScaLAPACK (dense)
Problem	Problem	For A=A ^H or A=A ^T	SLEPc (sparse)
Singular Value Problem	Singular Value	$A = U\Sigma V^T$	ScaLAPACK (dense)
	Decomposition	$A = U\Sigma V^{H}$	SLEPc (sparse)
Generalized Symmetric	Eigenproblem	$Az = \lambda Bz$	ScaLAPACK (dense)
Definite Eigenproblem		$ABz = \lambda z$	SLEPc (sparse)
		$BAz = \lambda z$	Office of Science U.S. DEPARTMENT OF ENERGY

Computational Problem	Methodology	Algorithm	Library
Non-Linear Equations		Líne Search	PETSc
		Trust Regions	PETSc
	Newton Based	Pseudo-Transient Continuation	PETSc
		Matríx Free	PETSc

Computational Problem	Methodology	Algorithm	Library
Non-Linear		Newton	OPT++
Optimization			TAO
		Finite-Difference	OPT++
		Newton	TAO
	Newton Based	Quasí-Newton	OPT++
			TAO
		Non-linear Interior	OPT++
		Point	TAO
		Standard Non-linear	OPT++
		CG	TAO
	CG	Limited Memory BFGS	OPT++
		Gradient Projections	TAO
	Dírect Search	No derivate information	OPT++ Office of Science U.S. DEPARTMENT OF ENERGY

Computational Problem	Methodology	Algorithm	Library
Non-Línear		Feasible Semismooth	TAO
Optimization (cont)	Semismoothing	Unfeasible semismooth	TAO
Ordinary Differential		Adam-Moulton	CVODE (SUNDIALS)
Equations	Integration	(Variable coefficient forms)	CVODES
	Backward Differential	Direct and Iterative	CVODE
	Formula	Solvers	CVODES
Nonlinear Algebraic	Inexact Newton	Line Search	KINSOL (SUNDIALS)
Equations	inexact newton		
Differential Algebraic	Backward Differential	Direct and Iterative	IDA (SUNDIALS)
Equations	Formula	Solvers	Office of Science U.S. DEPARTMENT OF ENERGY

Computational Problem	Support	Techniques	Library
Writing Parallel Programs	Dístríbuted Arrays	Shared-Memory Distributed Memory Grid Generation Structured Meshes Semi-Structured Meshes	Global Arrays CUMULVS (viz) Globus (Grid) OVERTURE CHOMBO (AMR) Hypre OVERTURE PETSc CHOMBO (AMR) Hypre OVERTURE OVERTURE OVERTURE

Computational Problem	Support	Technique	Library
Profiling	Algorithmic Performance	Automatic instrumentation	PETSc
	1 CHOITIMANCE	User Instrumentation	PETSc
	Execution Performance	Automatíc Instrumentatíon	TAU
	remance	User Instrumentation	TAU
Code Optimization	Library Installation	Línear Algebra Tuning	ATLAS
Interoperability	Code Generation	Language	BABEL
	Code deneration	Components	CCA Office of

How Does One Use ACTS Tools?


```
CALL BLACS_GET( -1, 0, ICTXT )
CALL BLACS_GRIDINIT( ICTXT, 'Row-major', NPROW, NPCOL )

CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )

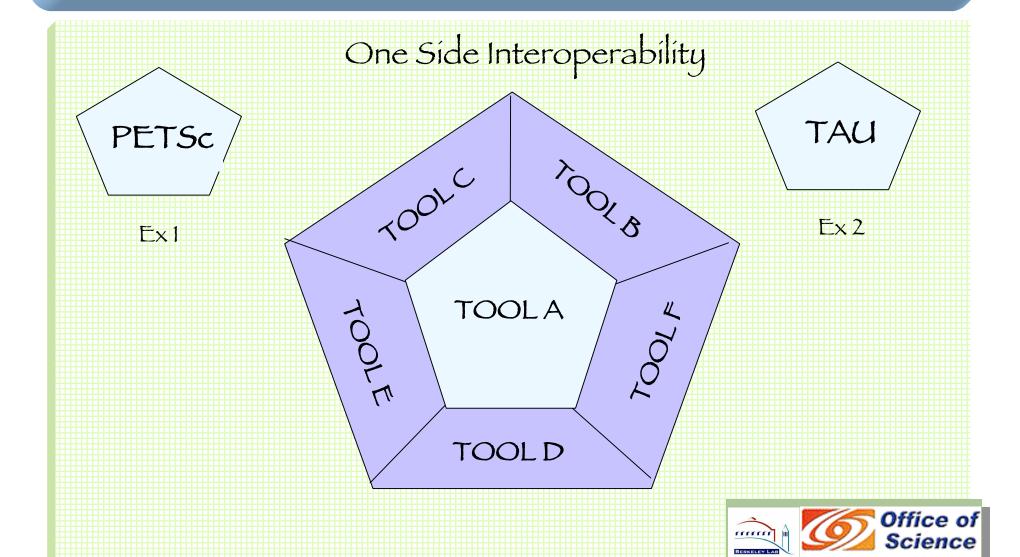
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )

CALL PDGESV( N, NRHS, A, IA, JA, DESCA, IPIV, B, IB, JB, DESCB, $ INFO )
```

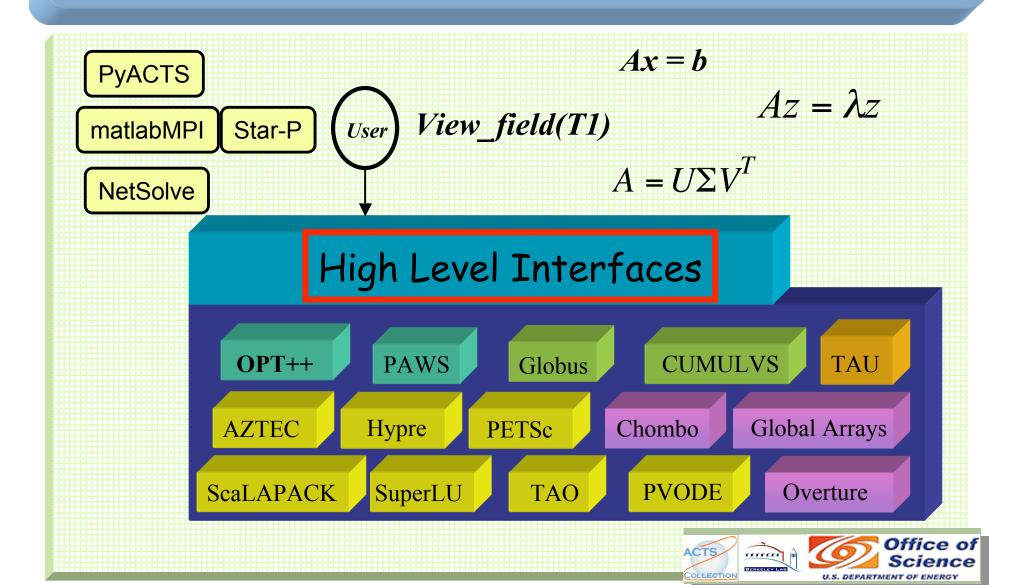
Language Calls

Command lines

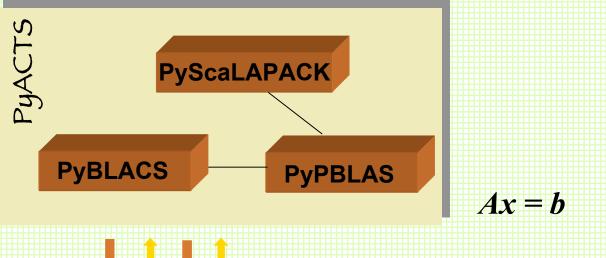
- -ksp_type [cg,gmres,bcgs,tfqmr,...]
- -pc_type [lu,ilu,jacobi,sor,asm,...] *More advanced:*
- -ksp_max_it <max_iters>
- -ksp_gmres_restart <restart>
- -pc_asm_overlap <overlap>-pc_asm_type <..>



Problem Domain



Tool to Tool Interoperability



High-level User Interfaces to the ACTS Collection

A Closer Look Into the ACTS Collection

 $Az = \lambda z$

 $A = U\Sigma V^{T}$

PETSc SLEPc

ScaLAPACK

Dr. J. Roman

TAU

Dr. O. Marques

A Quick Introduction to ScaLAPACK

ScaLAPACK Users' Guide

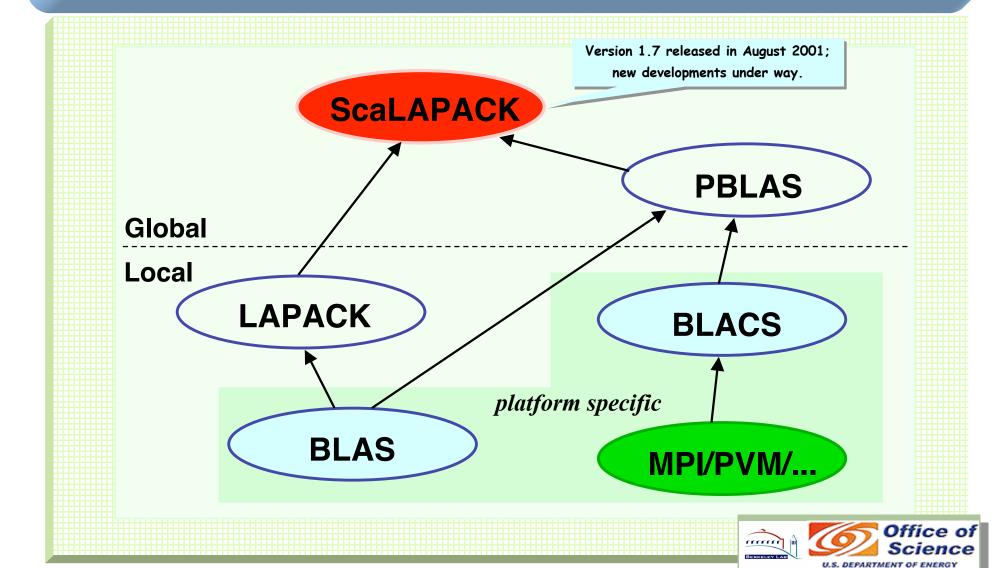
L. S. Blackford • J. Choi • A. Cleary • E. D'Azevedo J. Demmel • I. Dhillon • J. Dongarra • S. Hammarling G. Henry • A. Petitet • K. Stanley • D. Walker • R. C. Whaley

Team of Developers:

- Susan Blackford
- · Jaeyoung Choi, Soongsil University
- Andy Cleary, LLNL
- Ed D'Azevedo, ORNL
- Jim Demmel, UCB
- Inderjit Dhillon, UT Austin
- Jack Dongarra, UTK
- Ray Fellers, LLNL
- Sven Hammarling, NAG
- Greg Henry, Intel
- Sherry Li, LBNL
- Osní Marques, LBNL
- Caroline Papadopoulos, UCSD
- Antoine Petitet, UTK
- Ken Stanley, UCB
- Francoise Tisseur, Manchester
- David Walker, Cardiff
- Clint Whaley, UTK
- Julien Langou, UTK

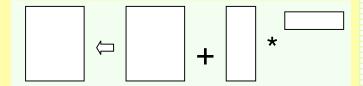
A Quick Introduction to ScaLAPACK

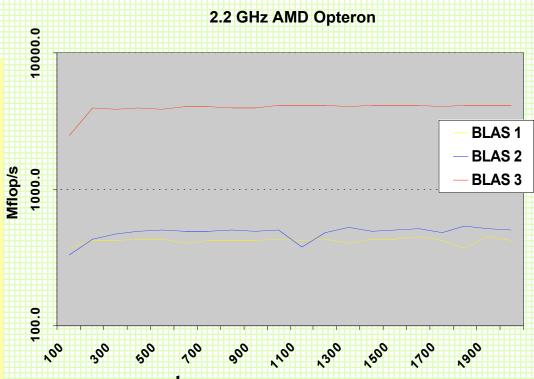
OUTLINE:


- ScaLAPACK: software structure
 - -Basic Linear Algebra Subprograms (BLAS)
 - -Linear Algebra PACKage (LAPACK)
 - -Basic Linear Algebra Communication Subprograms (BLACS)
 - -Parallel BLAS (PBLAS)
- ScaLAPACK: details
 - -Data layout
 - -Array descriptors
 - -Error handling
 - -Performance
- Examples

ScaLAPACK's Software Structure

BLAS: <u>Basic Linear Algebra Subroutines</u>




BLAS LEVELS:

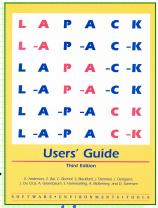
• Level 1 BLAS: vector-vector

• Level 2 BLAS: matrix-vector

• Level 3 BLAS: matrix-matrix

Design Considerations:

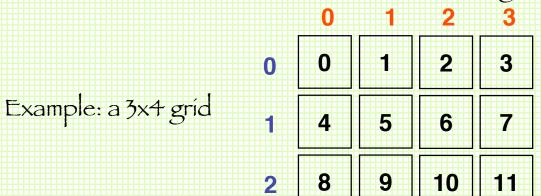
- Portability
- Performance: development of blocked algorithms is important for performance!



LAPACK: A Dense Linear Algebra Package

- Linear Algebra library written in Fortran 77 (Fortran 90)
- Combine algorithms from LINPACK and EISPACK into a single package.
- Efficient on a wide range of computers (RISC, Vector, SMPs).
- Built atop level 1, 2, and 3 BLAS Basic problems:
 - Linear systems: Ax = b
 - Least squares: $\min ||Ax b||_{2}$
 - Singular value decomposition: $A = U\Sigma V^T$
 - Eigenvalues and eigenvectors: $Az = \lambda z$, $Az = \lambda Bz$
- · LAPACK does not provide routines for structured problems or general sparse matrices (i.e. sparse storage formats such as compressed-row, -column, -diagonal, skyline ...).

BLACS: Basic Linear Algebra Communication Subroutines


- Response to Message Passing based distributed communications
- Associate widely recognized mnemonic names with communication operations. This improves:
 - program readability
 - self-documenting quality of the code.
- Promote efficiency by identifying frequently occurring operations of linear algebra which can be optimized on various computers.

Basic Concepts of The BLACS Interface

- Promote efficiency by identifying common operations of linear algebra that can be optimized on various computers.
- Processes are embedded in a two-dimensional grid.

 An operation which involves more than one sender and one receiver is called a scoped operation.

Scope
Meaning

Scope	Meaning
Row	All processes in a process row participate.
Column	All processes in a process column participate.
All	All processes in the process grid participate.

BLACS Communication Routines

Send/Receive:

```
xxSD2D(ICTXT, [UPLO,DIAG],M,N,A,LDA,RDEST,CDEST)
```

xxRV2D(ICTXT, [UPLO,DIAG],M,N,A,LDA,RSRC,CSRC)

_ (Data type)	xx (Matrix type)
I: Integer,	GE: General rectangular matrix
	TR: Trapezoidal matrix
D: Double Precision,	
C: Complex,	
Z: Double Complex.	

Broadcast:

**BS2D(ICTXT, SCOPE, TOP, [UPLO, DIAG], M, N, A, LDA)

**BR2D (ICTXT, SCOPE, TOP, [UPLO, DIAG], M, N, A, LDA, RSRC, CSRC)

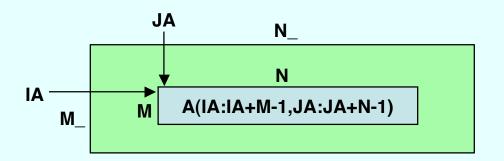
SCOPE	TOP
'Row' 'Column' 'All'	' (default)'Increasing Ring''1-tree'

BLACS Context

- BLACS context

 MPI communicator
- The BLACS context is the BLACS mechanism for partitioning communication space.
- A message in a context cannot be sent or received in another context.
- · The context allows the user to
 - create arbitrary groups of processes
 - create multiple overlapping and/or disjoint grids
 - isolate each process grid so that grids do not interfere with each other

An Example Code Using BLACS

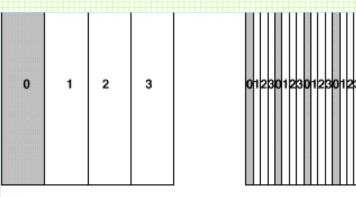

```
(out) uniquely identifies each process
                                     (out) number of processes available
 Get system information
   CALL BLACS_PINFO ( IAM, NPROCS ) integer handle indicating the context
                                   (in) use (default) system context
* Get default system context (out) BLACS context
   CALL BLACS GET ( 0, 0, ICTXT )
                                                               (output)
                                                            process row and
* Define 1 x (NPROCS/2+1) process grid
                                                           column coordinate
   NPROW = 1
   NPCOL = NPROCS / 2 + 1
   CALL BLACS GRIDINIT ( ICTXT, 'Row', NPROW, NPCO
   CALL BLACS GRIDINFO ( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
* If I'm not in the grid, go to end of program
   IF ( MYROW.NE.-1 ) THEN
                                                          send X to process (1,0)
     IF ( MYROW.EQ.O .AND. MYCOL.EQ.O ) THEN
        CALL DGESD2D ( ICTXT, 5, 1, X, 5, 1, 0 )
     ELSE IF ( MYROW.EQ.1 .AND. MYCOL.EQ.0 ) THEN
       CALL DGERV2D ( ICTXT, 5, 1, Y, 5, 0, 0 )
     END IF
                                                       receive X from process (0,0)
     CALL BLACS GRIDEXIT ( ICTXT ) ← leave context
   END IF
   CALL BLACS EXIT ( 0 ) ← exit from the BLACS
   END
```

PBLAS: Parallel BLAS

- Similar to the BLAS in portability, functionality and naming.
- Built atop the BLAS and BLACS
- Províde global víew of matríx

Array descriptor (to be reviewed later)

ScaLAPACK Design Goals

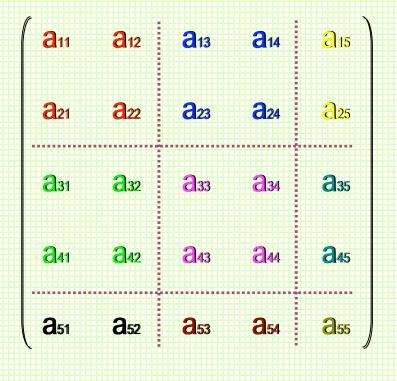

- Efficiency
 - -Optimized computation and communication engines
 - -Block-partitioned algorithms (Level 3 BLAS) for good node performance
- Reliability
 - -Whenever possible, use LAPACK algorithms and error bounds.
- Scalability
 - -As the problem size and number of processors grow
 - -Replace LAPACK algorithm that did not scale (new ones into LAPACK)
- Portability
 - -Isolate machine dependencies to BLAS and the BLACS
- Flexibility
 - -Modularity: build rich set of linear algebra tools (BLAS, BLACS, PBLAS)
- Ease-of-Use
 - -Calling interface similar to LAPACK

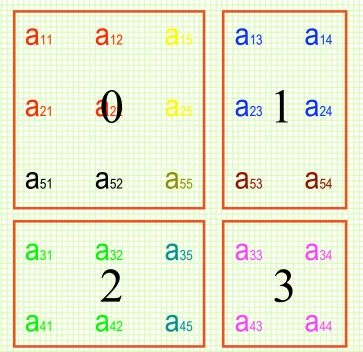
ScaLAPACK: Data Layouts

- 1D block and column distributions
- 1D block-cycle column and 2D block-cyclic distribution
- 2D block-cyclic distribution used in ScaLAPACK for dense matrices

0 1 2 3 0 1	2 3
-------------	-----

0	1	0	1	0	1	0	1
2	3	2	3	2	3	2	3
0	1	0	1	0	1	0	1
2	3	2	3	2	3	2	3
0	1	0	1	0	1	0	1
2	3	2	3	2	3	2	3
0	1	0	1	0	1	0	1
2	3	2	3	2	3	2	3



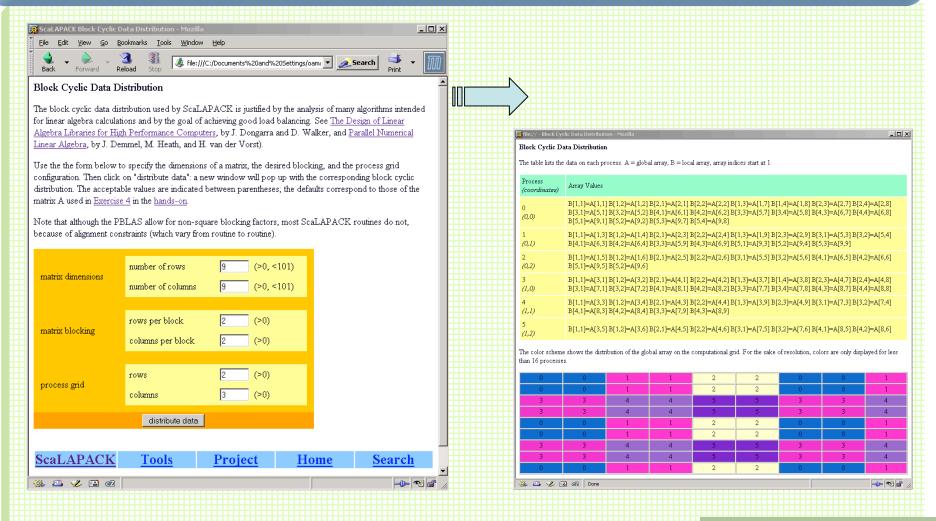

How does 2D Block Cyclic Distribution Work

5x5 matrix partitioned in 2x2 blocks

2x2 process grid point of view

An Example of 2D Block Cyclic Distribution


```
1.5
                                                                                                       LDA is the leading
                                                                                                      dimension of the local
-2.1
                          2.5
                                                                                                            array
                                 CALL BLACS GRIDINFO ( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
-3.1 -3.2 3.3 3.4 3.5
-4.1 - 4.2 - 4.3 4.4
                                 ΙF
                                          ( MYROW.EQ.O .AND. MYCOL.EQ.O ) THEN
\begin{bmatrix} -5.1 & -5.2 & -5.3 & -5.4 \end{bmatrix}
                                          A(1) = 1.1; A(2) = -2.1; A(3) = -5.1;
                                          A(1+LDA) = 1.2; A(2+LDA) = 2.2; A(3+LDA) = -5.2;
                                          A(1+2*LDA) = 1.5; A(2+3*LDA) = 2.5; A(3+4*LDA) = -5.5;
                                 ELSE IF ( MYROW.EO.O .AND. MYCOL.EO.1 ) THEN
                                          A(1) = 1.3; A(2) = 2.3; A(3) = -5.3;
                                          A(1+LDA) = 1.4; A(2+LDA) = 2.4; A(3+LDA) = -5.4;
                                 ELSE IF ( MYROW.EQ.1 .AND. MYCOL.EQ.0 ) THEN
                                          A(1) = -3.1; A(2) = -4.1;
                                          A(1+LDA) = -3.2; A(2+LDA) = -4.2;
                                          A(1+2*LDA) = 3.5; A(2+3*LDA) = 4.5;
                    a<sub>13</sub> a<sub>14</sub>
                                 ELSE IF ( MYROW.EO.1 .AND. MYCOL.EO.1 ) THEN
                                          A(1) = 3.3; A(2) = -4.3;
                                          A(1+LDA) = 3.4; A(2+LDA) = 4.4;
                    a<sub>23</sub>
                                 END IF
              a55
                    a<sub>53</sub> a<sub>54</sub>
                                 CALL PDGESVD ( JOBU, JOBVT, M, N, A, IA, JA, DESCA, S, U, IU,
              a35
                    a33
                                                 JU, DESCU, VT, IVT, JVT, DESCVT, WORK, LWORK,
                                                 INFO )
 a<sub>41</sub>
              a<sub>45</sub>
                    a<sub>43</sub>
```


Why the headache of 2D block Cyclic Distribution?

- Ensures good load balance → performance and scalability (analysis of many algorithms to justify this layout).
- Encompasses a large number of data distribution schemes (but not all).
- Needs redistribution routines to go from one distribution to the other.
- See http://acts.nersc.gov/scalapack/hands-on/datadist.html

AID: http://acts.nersc.gov/scalapack/hands-on/datadist.html

ScaLAPACK: Array Descriptors

- Each global data object is assigned an array descriptor.
- The array descriptor:
 - Contains information required to establish mapping between a global array entry and its corresponding process and memory location (uses concept of BLACS context).
 - Is differentiated by the DTYPE_ (first entry) in the descriptor.
 - Provides a flexible framework to easily specify additional data distributions or matrix types.
- User must distribute all global arrays prior to the invocation of a ScaLAPACK routine, for example:
 - Each process generates its own submatrix.
 - One processor reads the matrix from a file and send pieces to other processors (may require message-passing for this).

Array Descriptor for Dense Matrices

	DESC_()	Symbolic Name	Scope	Definition
	1	DTYPE_A	(global)	Descriptor type DTYPE_A=1 for dense matrices.
	2	CTXT_A	(global)	BLACS context handle.
	3	M_A	(global)	Number of rows in global array A.
	4	N_A	(global)	Number of columns in global array A.
	5	MB_A	(global)	Blocking factor used to distribute the rows of array A.
	6	NB_A	(global)	Blocking factor used to distribute the columns of array A.
	7	RSRC_A	(global)	Process row over which the first row of the array A is
#				distributed.
I	8	CSRC_A	(global)	Process column over which the first column of the array A
1				is distributed.
	9	LLD_A	(local)	Leading dimension of the local array.

Array Descriptor for Narrow Band Matrices

DESC_()	Symbolic Name	Scope	Definition
1	DTYPE_A	(global)	Descriptor type DTYPE_A=501 for 1 x Pc process grid for band and tridiagonal matrices block-column distributed.
2	CTXT A	(global)	BLACS context handle.
3	N_A	(global)	Number of columns in global array A.
4	NB_A	(global)	Blocking factor used to distribute the columns of array A.
5	CSRC_A	(global)	Process column over which the first column of the array A
			is distributed.
6	LLD_A	(local)	Leading dimension of the local array. For the tridiagonal
			subroutines, this entry is ignored.
7	-	-	Unused, reserved.

Array Descriptor for Right Hand Sides for Narrow Band Linear Solvers

	DESC_()	Symbolic Name	Scope	Definition
	1	DTYPE_B	(global)	Descriptor type DTYPE_B=502 for Pr x 1 process grid for block-row distributed matrices
Ħ	2	CTXT_B	(global)	BLACS context handle
Ħ	3	M_B	(global)	Number of rows in global array B
H	4	MB_B	(global)	Blocking factor used to distribute the rows of array B
	5	RSRC_B	(global)	Process row over which the first row of the array B is distributed
	6	LLD_B	(local)	Leading dimension of the local array. For the tridiagonal subroutines, this entry is ignored
	7	-	-	Unused, reserved

ScaLAPACK Functionality

A b	Driver type		Factor	Solve	Inversion	Conditioning	Iterative
Ax = b	Simple	Expert	acioi	JOINE	IIIVCI SIOIT	estímator	Refinement
Triangular	×			×	×	×	X
SPD	×	×	×	×	×	×	×
SPD Banded	×		×	×			
SPD Tridiagonal	×		×	×			
General	×	×	×	X	×	×	×
General Banded	×		×	×			
General Tridiagonal	×		x	×			
Least Squares	×		×	×			
GQR			×				
GRQ			X				
$Ax = \lambda x$ or $Ax = \lambda Bx$	Símple	Expert	Reduce	Solve			
Symmetric	×	X	X	×			
General	×	×	×	×			
Generalized BSPD	×		×	×			
SVD			×	×			₹ Office o

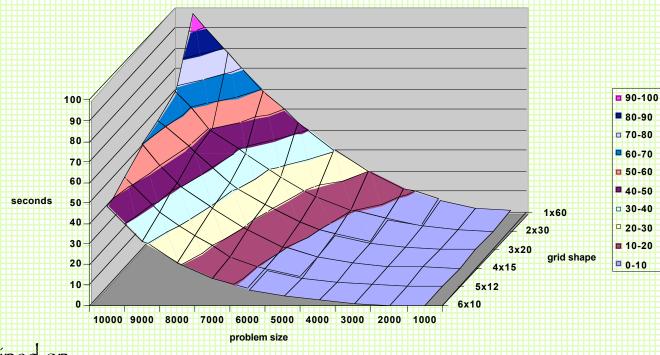
ScaLAPACK: Error Handling

- Driver and computational routines perform global and local input error-checking.
 - Global checking → synchronization
 - Local checking → validity
- No input error-checking is performed on the auxiliary routines.
- If an error is detected in a PBLAS or BLACS routine program execution stops.

ScaLAPACK: Debugging Hints

- Look at ScaLAPACK example programs.
- · Always check the value of INFO on exit from a ScaLAPACK routine.
- Query for size of workspace, LWORK = −1.
- · Link to the Debug Level 1 BLACS (specified by BLACSDBGLVL=1 in Bmake.inc).
- Consult errata files on netlib: http://www.netlib.org/scalapack/errata.scalapack http://www.netlib.org/blacs/errata.blacs

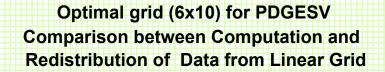
ScaLAPACK Performance

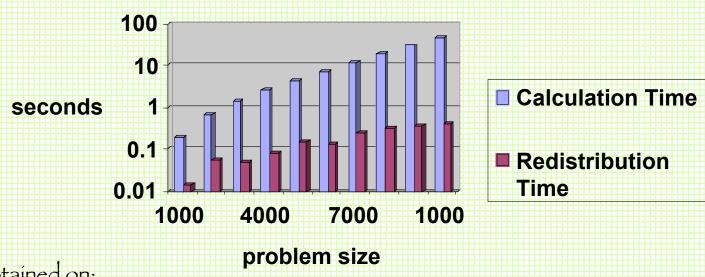

- The algorithms implemented in ScaLAPACK are scalable in the sense that the parallel efficiency is an increasing function of N^2/P (problem size per node).
- Maintaining memory use per node constant allows efficiency to be maintained (in practice, a slight degradation is acceptable).
- Use efficient machine-specific BLAS (not the Fortran 77 source code available in http://www.netlib.gov) and BLACS (nondebug installation).
- On a distributed-memory computer:
 - Use the right number of processors
 - Rule of thumb: P=MxN/10⁶ for an MxN matrix, which provides a local matrix of size approximately 1000-by-1000.
 - Do not try to solve a small problem on too many processors.
 - Do not exceed the physical memory.
 - Use an efficient data distribution.
 - Block size (i.e., MB,NB) = 64.
 - Square processor grid: Prow = Pcolumn.

ScaLAPACK Performance: Varying Proc Grid Size

Execution time of PDGESV for various grid shape

Times obtained on:


60 processors, Dual AMD Opteron 1.4GHz Cluster with Myrinet Interconnect, 2GB Memory

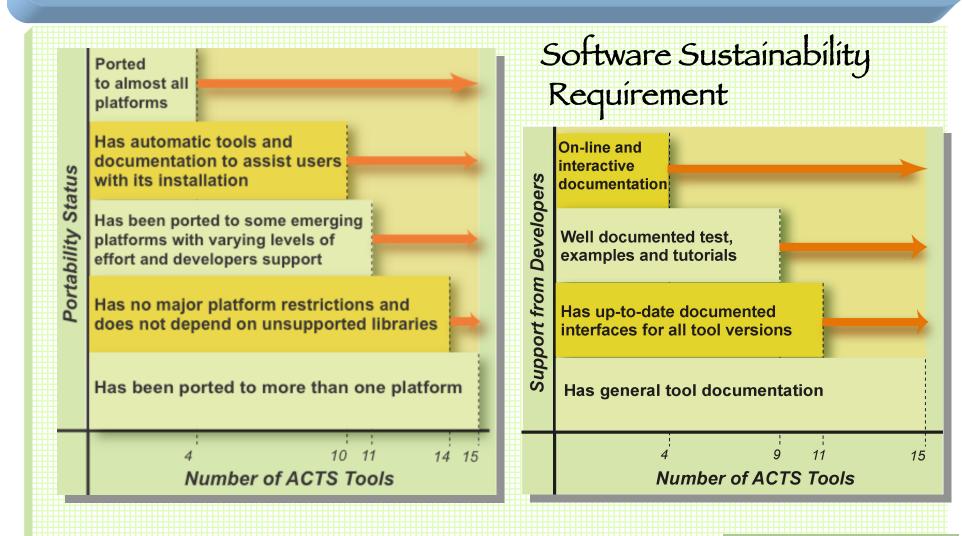


ScaLAPACK Performance: Computation vs. Communication

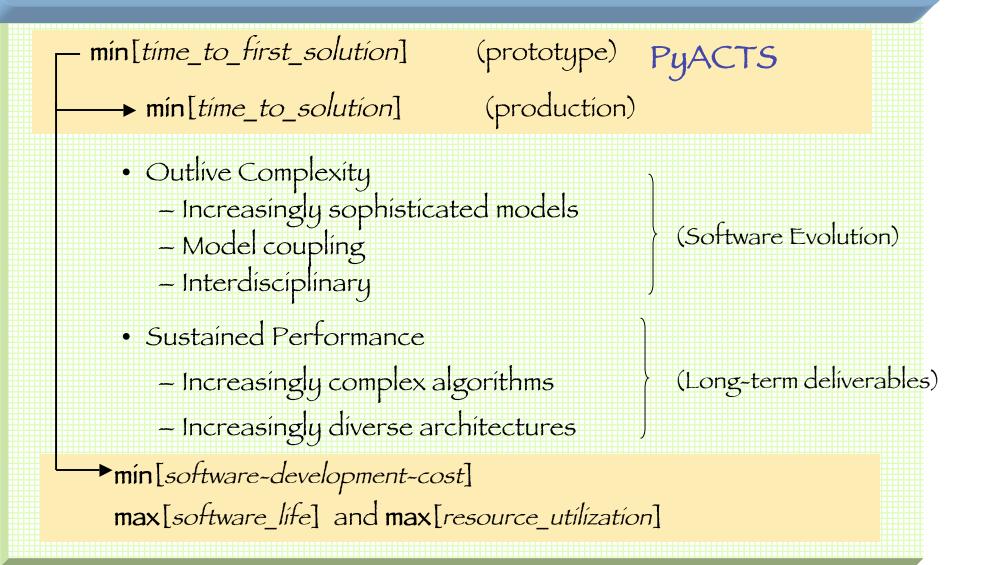
Times obtained on:

60 processors, Dual AMD Opteron 1.4GHz Cluster w/Myrinet Interconnect 2GB Memory

Commercial use of ScaLAPACK


ScaLAPACK has been incorporated in the following commercial packages:

- Fujitsu
- Hewlett-Packard
- Hitachi
- IBM Parallel ESSL
- NAG Numerical Library
- Cray LIBSCI
- NEC Scientific Software Library
- Sun Scientific Software Library
- Visual Numerics (IMSL)


SUMMARY

SUMMARY



References

- ScaLAPACK and PyACTS hands-on this week
- PETSc and SLEPc tutorials this week
- ACTS Information Center: http://acts.nersc.gov
- Two Journal Issues dedicated to ACTS

Eighth ACTS Collection Workshop, August 21-24, 2007

